29 SEPTEMBER 2022

Canadian Robotics Landscape and SWOT Analysis

Canada's Robotics Ecosystem

PREPARED FOR:

ABOUT THIS PRESENTATION

In late 2020, Avascent was contracted by ISED and the CSA to undertake an analysis of the current state of Canada's robotics sector

Avascent has developed a working definition and segmentation of robotics

Definitional Challenges

Defining what constitutes a robotic system is an ongoing challenge in the industry and Avascent has focused on...

- Broadly capturing the robotics industry, but not so broad to reduce its analytical value
- Ensuring that segments are clear and logical to support a comprehensive framework
- Actively supporting the development of actionable analysis

Discussion

Keeping these challenges in mind, Avascent evaluated the organizations in Canada's robotics industry by:

- The **end market** that they serve (e.g., consumer, civil, etc.)
- The programming or autonomous complexity (e.g., preprogrammed, teleoperated, etc.) they have
- Their **position along a value chain** for manufacturers (e.g., effector, power, propulsion, etc.)

Which should act as a holistic framework to evaluate Canada's whole robotics industry, **offering insight into areas of differentiation** as well as their position both within robotics and in relation to other key Canadian industries

Avascent's Working Definition

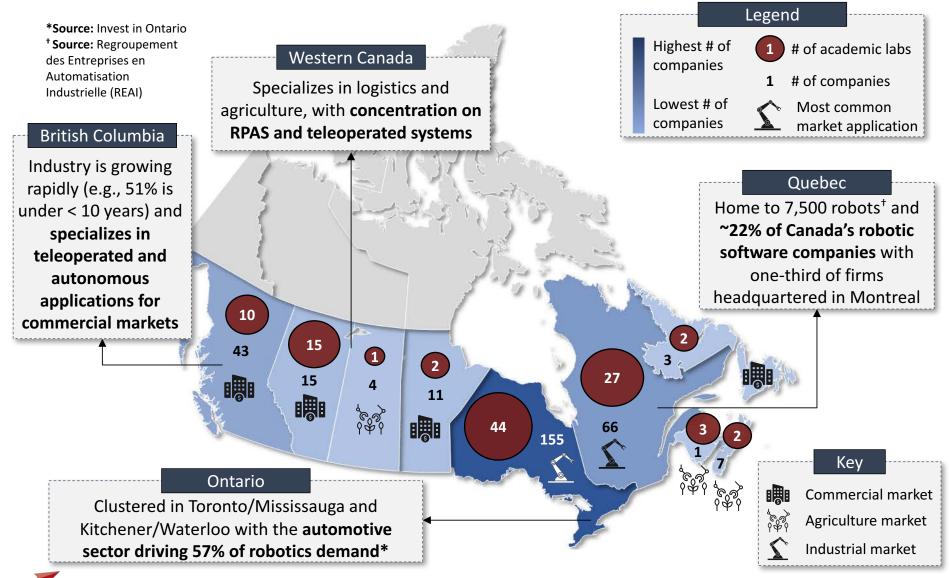
Robotics includes the engineering and technical disciplines for the productive capacity and operating know-how necessary to **design and use physical machines that sense**, **think, and/or act to replace, supplement or enhance human tasks**

Sources: IEEE, Learn.g2.com, EU Robotics, Consortium on Cognitive Science Instruction, and the University of Toronto Robotics Institute

ROBOTICS DEFINITION: ROBOTIC MARKETS

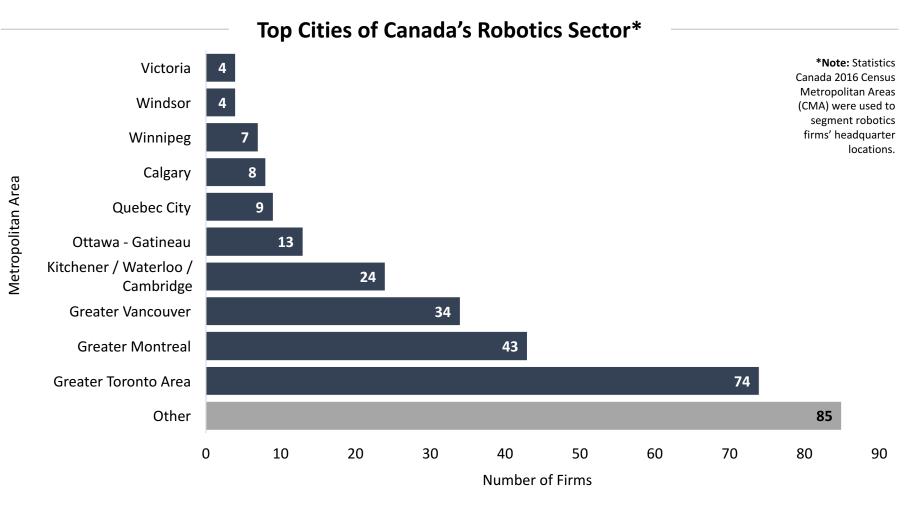
The Canadian robotics industry can be segmented into nine user markets...

Market	Definition
Consumer	 Robotics for domestic use, transportation, education supplement, or entertainment (e.g., autonomous vehicles, robotic vacuums, teaching assistants, or consumer drones)
Civil	 Robotics used for civil applications including infrastructure services, policing services, and emergency services (e.g., urban cleaning robots and search & rescue field robots)
Commercial	 Robotics used in commercial applications such as in oil & gas, utilities, mining, and office automation (e.g., traversing dangerous environments, office cleaning, etc.)
Logistics & Transport	• Used to automate the storing and moving goods as they move through supply chains (e.g., automated guided vehicles for warehouses and delivery robots)
Military & Security	 Commonly used in dangerous environments (e.g., explosives scouting) or to augment human skills (e.g., exoskeletons for soldiers)
Industrial & Manufacturing	• Commonly automated, programmable robotic arms performing repetitive tasks at high rates of speeds (e.g., welding, painting, assembling, inspecting, and testing)
Healthcare & Medical	 Robots used in environments such as hospitals and rehabilitation centers (e.g., robotic arms used during surgeries as well as exoskeletons for recovery or prosthetics)
်န္နာ Agriculture	 Robotics used for agricultural purposes, commonly used to automate slow, repetitive, and dull tasks for farmers (e.g., fruit picking robots and driverless crop sprayers)
زياً Other	 Other robotic applications not captured by the preceding categories (e.g., research robots, etc.)
1	Sources: IEEE, EU Robotics, Consortium on Cognitive Science Instruction, International Federation of Robotics


...And classified into five different categories of autonomy or complexity

	Туре	Definition
HOIH	Autonomous	 Operate independently of humans, the robotic system determines environmental changes and adapts – often used in mixed human-robotic environments Examples: household robotic vacuum cleaners and unmanned aerial vehicles
	Collaborative	 Robots that safely work alongside humans in shared, collaborative workspaces – designed with safety as a top priority Example: robotic arms performing inspections alongside humans on an assembly line
Complexity	Teleoperated	 Controlled remotely by human beings, taking commands from operators and executing tasks precisely how they are instructed Example applications: robotics used in medical surgeries and the Canadarm3 in space
	Augmenting	 Augmenting robots are those that can be connected directly to the human body Commonly used to enhance user's natural skill (e.g., extend reach) and replacing skills that have been lost (e.g., robotic prosthetic arms)
MOI	Pre- Programmed	 Used in controlled environments isolated from humans to execute programmed tasks incapable of changing behaviour or being guided by humans while operating Example application: robotic arms used on automotive assembly lines
	COENT	Sources: IEEE, EU Robotics, Consortium on Cognitive Science Instruction, International Federation of Robotics

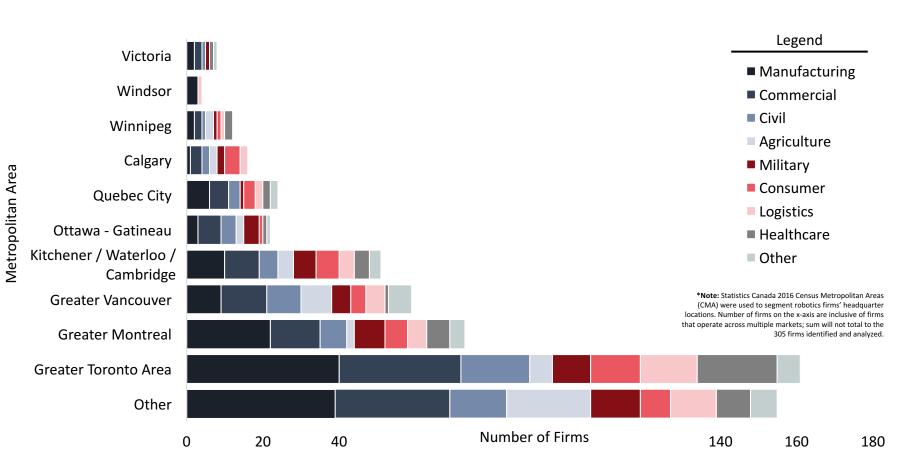
CANADIAN ROBOTICS INDUSTRY OVERVIEW


There are over 305 companies and 105 academic research labs that comprise Canada's robotics sector

AVASCENT

KEY METROPOLITAN AREAS ACROSS CANADA (1 OF 3)

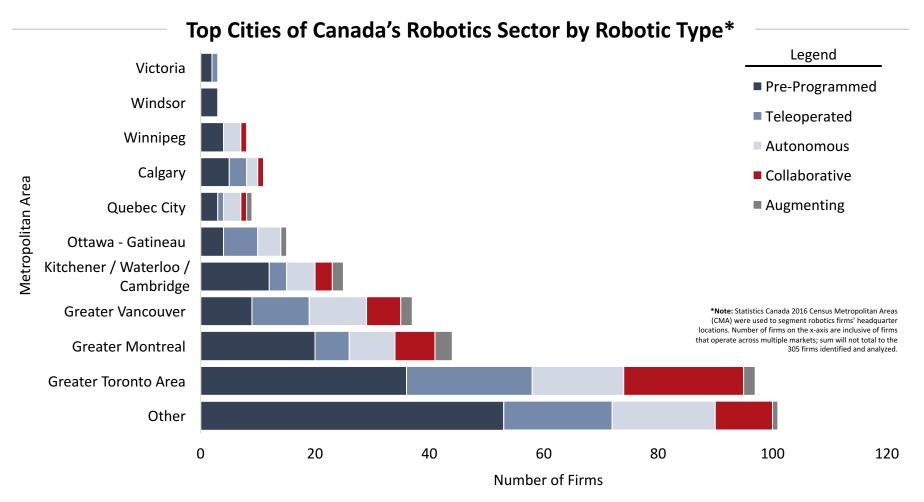
Nearly half of all Canadian robotics firms are headquartered in the Greater Toronto, Montreal, and Vancouver metropolitan areas



The Toronto and Kitchener / Waterloo / Cambridge areas demonstrate a high density of robotics firms which represents ~32% of Canada's total industry

KEY METROPOLITAN AREAS ACROSS CANADA (2 OF 3)

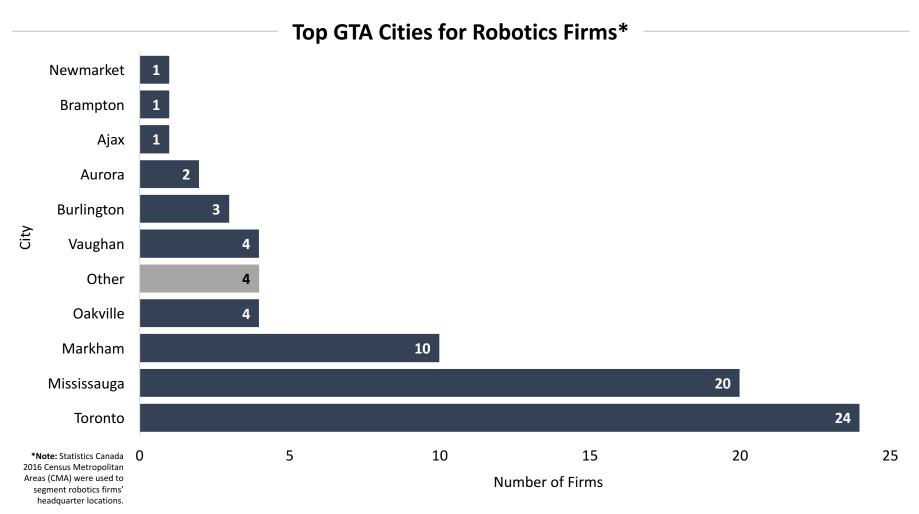
On average, Canadian robotics firms serve 1.9 end markets, with the manufacturing and commercial markets representing 43% of industry focus


Top Cities of Canada's Robotics Sector by Robotic Market*

Firms located in robotic clusters (e.g., Toronto, Kitchener / Waterloo / Cambridge) demonstrate above average capabilities in terms of their number of markets served

KEY METROPOLITAN AREAS ACROSS CANADA (3 OF 3)

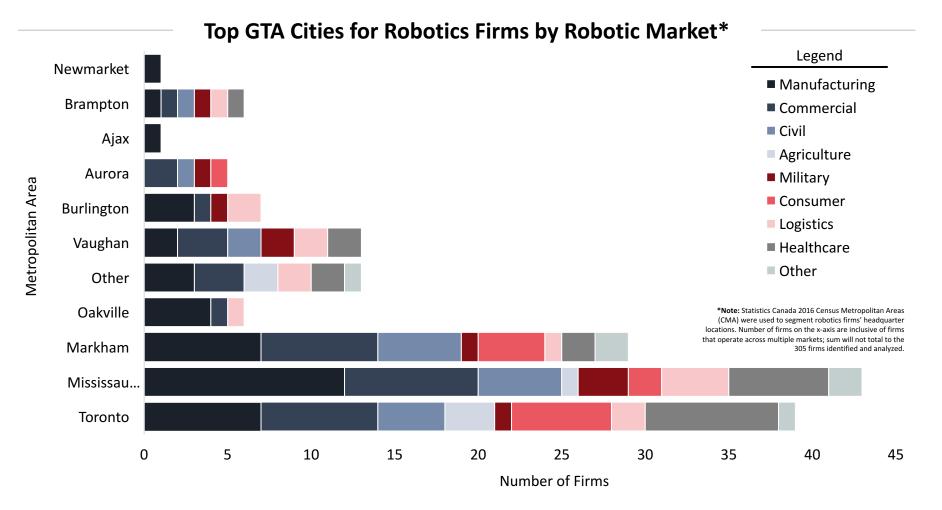
About a dozen Canadian firms offer three or more types of robots to their customers, while the industry averages 1.2 robot types offered per firm



Pre-programmed robotic solutions comprise 43% of industry offerings and are often serving industrial and manufacturing customers in Ontario and Quebec

GREATER TORONTO AREA (1 OF 3)

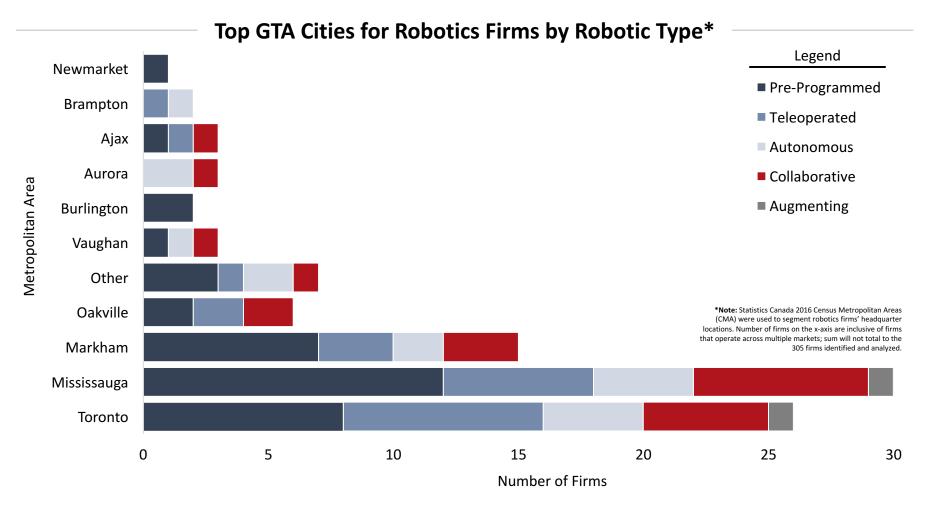
Within the Greater Toronto Area (GTA), over 59% of robotics firms are located in the City of Toronto and Mississauga



On a robotics company per capita basis, Aurora and Markham demonstrate a high density of firms (~2.4x multiple) compared to the industry average within the GTA

GREATER TORONTO AREA (2 OF 3)

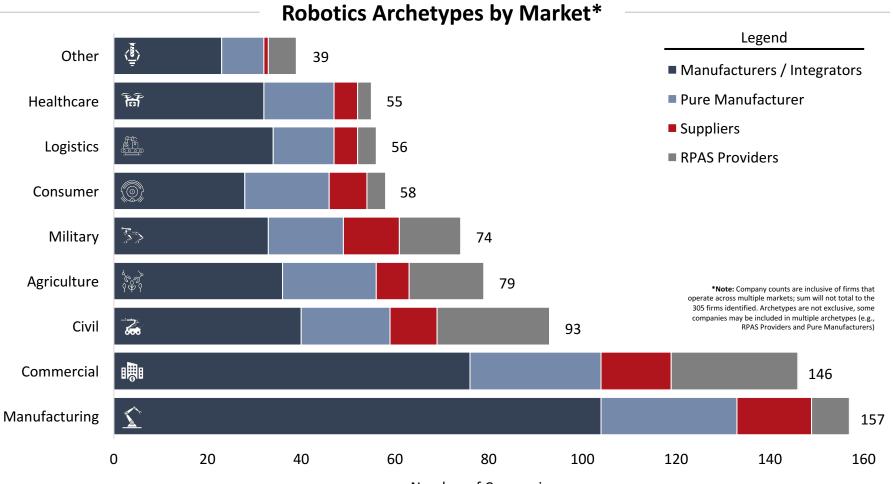
GTA firms serve more markets than the average Canadian firm which may be attributed to their closer proximity to more customers, suppliers, & skilled labour



Nearly 45% of Canadian firms offering robots for healthcare and medical applications operate out of the GTA, with large concentrations in Toronto and Mississauga

GREATER TORONTO AREA (3 OF 3)

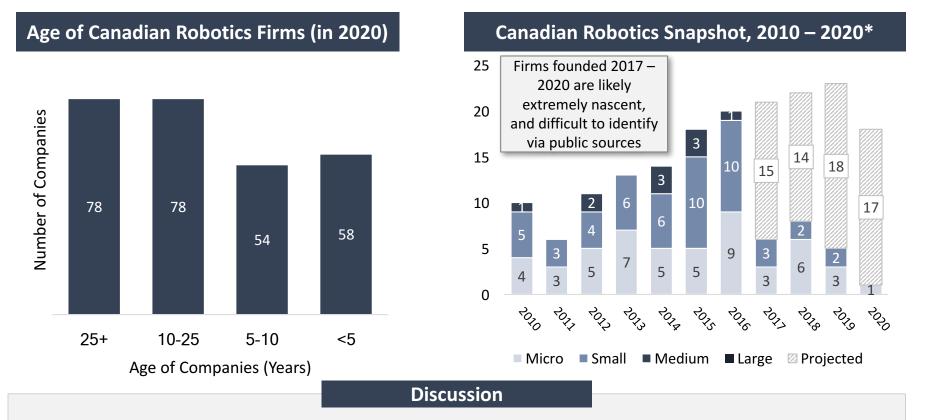
Companies in the GTA demonstrate strong product and service offerings across all robotic types, with the exception of augmenting solutions



Many (42%) of the firms that provide collaborative robots are headquartered in the GTA, applications range from manufacturing, commercial, healthcare, and civil use cases

ROBOTICS SNAPSHOT

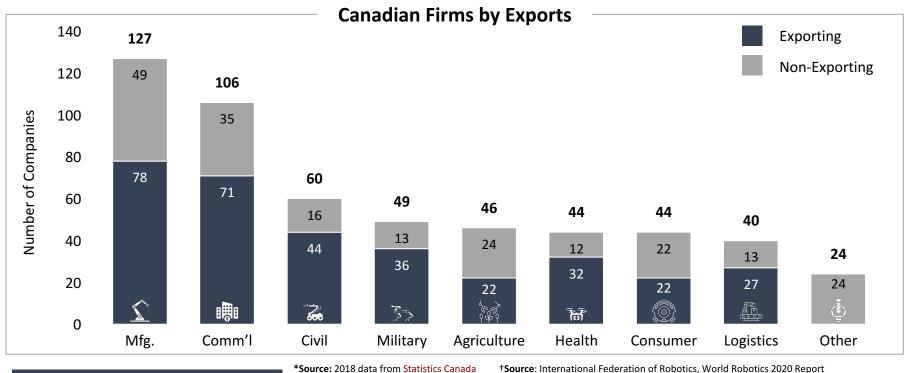
Robotic manufacturers / integrators are the largest (identifiable) segment of firms across all major markets


Number of Companies

Canada's manufacturers and integrators may be threatened by supply chain challenges, the commoditization of robotics, and slow domestic industry adoption rates

STRENGTHS: GROWING MOMENTUM

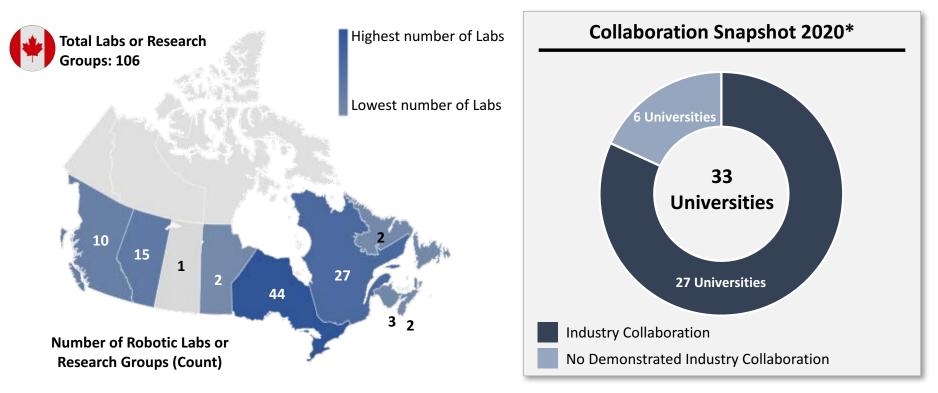
42% of Canada's robotics industry was founded within the last 10 years, indicating potential momentum for future growth



- 88% of the 305 firms from Canada's robotics sector are domestically owned
- There were 44% more firms founded between 2010 and 2020 than in the 15 years prior
- However, **fewer startups are scaling** to medium-size or above; those that do are growing slower than firms in previous decades

STRENGTHS: EXPORT-DRIVEN

The robotics sector is a clear champion of Canadian ingenuity, with more than 58% of firms having exported abroad



Discussion

- Canadian robotics companies are globally competitive, 176 firms demonstrated export sales, well above the Canadian average of 0.7%*
- Canadian firms are reliant on exports for success, due to nascent state of domestic customer base for robotics (e.g., more than 101 micro/small firms in Canada show evidence of export activity)
- Canada's **peers are adopting robotics at an accelerated rate** (e.g., Canada ranked 12th of 15 for annual robotic installations in 2019, ahead of only Thailand, Poland, and Czech Republic⁺)

Industry momentum comes from a robust academic sector, which spans over 105 research labs and groups, at 33 universities in 9 provinces

Discussion

- Ontario and Quebec are home to multi-disciplinary robotic institutes which **facilitate collaborative R&D** at leading universities (e.g., University of Toronto, Waterloo, McGill University)
- Robotics researchers based in Toronto, Montreal, and Edmonton benefit from their proximity to Canada's three national Al institutes; and many leading firms originated from academic institutions (e.g., Clearpath Robotics, Mecademic)

ROBOTICS SNAPSHOT

Strong Opportunities and Strong Challenges

STRENGTHS

- Strong academia-industry collaboration has created a **robust start-up community and talent pipeline**
- Canada is well positioned in Agriculture and Healthcare segments via differentiated capabilities or early adopters who could become market leaders
- Recently founded firms (2010 2020) are strongly aligned with future trends (e.g., prioritizing collaborative or autonomous applications)

OPPORTUNITIES

- Robust start-up community offers opportunity to reshape industry landscape
- Growing opportunity for robotics within the logistsics and transportation industry to relieve pain points created from supply chain disruptions
- Wider adoption of robotics is expected as recent workforce challenges (e.g., COVID-19, labour shortages) is driving automation in new industries

WEAKNESSES

- Lack of domestic robotics customer base (i.e., Canada ranked 18th of the top 20 economies for adoption) adds barriers for robotics growth
- Lack of large businesses bottlenecks professionals with combined business/robotics experience
 - Critical connections between robotics and other sectors remain unexplored or underpenetrated (mining, healthcare, agriculture, etc.)

THREATS

- 105 of Canada's firms are likely to see competitiveness decline due to pricing pressures/commoditization from China
- Proximity to the US, and lack of dedicated 'scale up' capital reduces industry scaling, as foreign acquisition capture domestic differentiated firms
- Public perception of robotics remain stuck in a 'fear-mongering' posture (e.g., high costs, job outsourcing), significantly reducing uptake rate

The Canadian robotics sector will need to grapple with both emerging and longstanding shortcomings

Key Industry Challenges

Small Domestic Market	Reduced uptick on automation stifles industry; Canada's high proportion of small manufacturers have limited desire or R&D funds to automate their operations Canada ranks 18 th out of the top 20 countries for robot density in manufacturing with 165 robots installed per 10k employees*
Difficulty in Scaling Up	With very few large Canadian robot manufacturers, the industry is highly fragmented and lacks the leadership and the expertise needed to scale startups Only 5% of Canadian owned robotics firms are large businesses, and 72% of the industry is comprised of micro and small businesses
Problems Connecting with Domestic Networks	Canada lacks a cohesive industry network to connects robotics firms, which inhibits collaboration and customers discovery, reducing overall industry maturity Some organizations connect firms provincially (e.g., QC's REAI), but most firms rely on US networks (e.g., Robotic Industries Association)
* Source : International Federation of Robotics, World Robotics 2020	The growth of Canadian robotics is stifled by the lack of domestic adoption,

but new technology presents a strong opportunity for growth

Report

OPPORTUNITIES: MAPPING CAPABILITY TO TRENDS

Canada's industry is well positioned to capitalize on key trends in the global robotics sector

	Trend	Analysis	Top Markets
Higher	Robotics Digitization	Enabling technologies used to enhance the robotic capabilities (e.g., AI for autonomy, LiDAR for vision, cloud for robotic network integration)	裔 Healthcare 家 Agriculture
Estimated Canadian Impact	'Cobots' & New Applications	Acceptance of collaborative 'cobots' will drive differentiation and adoption for new applications, with significant workforce implications	裔 Healthcare 聽 Commercial
	Manufacturing Commoditization	High demand in China and US likely to accelerate the commoditization of robotic components, and pre-programmed manufacturing systems	Manufacturing
	Regulatory Uncertainty	Codifying the relationships between humans, robotics systems , and other technologies for use in environments (e.g., RPAS for same-day delivery)	⑥ Consumer● Commercial<● Healthcare
Lower	COVID-19 Impact	Covid expected to increase the pace of automation via accelerated adoption including acting as catalyst for new sector adoption (e.g., electronics mfg.)	Manufacturing

Concentrated efforts will be needed to overcome roadblocks that threaten longterm growth in Canada's robotics sector

Emerging Threats

Global Competitors	A handful of nations dominate the global robotics export market and leading countries with low manufacturing labour rates (e.g., China) threaten Canadian firms' ability to compete internationally Over 62% of industrial robotics exports are concentrated within five countries (e.g., Japan, Germany, Italy, China, and the US)*
Acquisition Risk	Canada's proximity to the US can help support startup growth, but many firms struggle to scale independently and have been acquired by US or foreign firms Of the 16 large Canadian robotics firms analyzed, 31% had taken some level of foreign investment compared to 9% of small & medium sized firms
Robotics Perception	 Many Canadian firms perceive that robotics implementation will demand high capital expenditure, large training efforts, require significant time investments, and will lead to job loss which slows robotics adoption In an analysis of actual robot adoption rates as a share of expected adoption rate, Canada ranks 14th globally – 44% below expected adoption rates⁺
*Source: World's Top Export: Industrial Robots Exporters †Information technology &	There are both global threats (i.e., increasingly competitive international

markets) and uniquely Canadian threats facing the robotics sector

Innovation Foundation, Robotics and

the Future of Production and Work

WASHINGTON D.C.

+1 (202) 452 6990 1615 L Street, NW Suite 1200 Washington, D.C. 20036

PARIS +33 (0) 87 39 21 13 7 rue Rouget de Lisle 75001 Paris

OTTAWA

+1 (613) 564 8303 66 Queen Street, 3rd Floor Ottawa, ON K1P 5C6

LONDON +44 20 3934 9100 132 Buckingham Palace Road London SW1W 9SA

ΤΟΚΥΟ

+81 (3) 6870 3450

East Tower, 4th Floor, Otemachi First Square 5-1, Otemachi 1-chome, Chiyoda-ku Tokyo 100-0004 Japan